CENTURION CAMPUS

INDUSTRIAL ELECTRONICS N2
EXERCISE

4/5/2020 to 15/5/2020

DIRECT CURRENT THEORY

1. Three resistors with values $2 \Omega, 3 \Omega$ and 5Ω are connected in series then these three series resistors are connected in parallel to a 10Ω resistor. The DC supply voltage to the circuit is 24 V
1.1 Draw a fully labelled circuit diagram explained above and calculate:
1.2 The supply current and
[4,8 A]
1.3 The voltage drop across the 3Ω resistor.
2.

REFER TO THE CIRCUIT ABOVE AND CALCULATE:
2.1 The total resistance of the circuit
2.2 The supply current
3.

USE THE CIRCUIT ABOVE AND DETERMINE THE FOLLOWING:

3.1 The total resistance of the circuit	$[6 \Omega]$
3.2 The current flowing through the circuit	$[1 \mathrm{~A}]$
3.3 The voltage across the 6Ω resistor	$[1 \mathrm{~V}]$
3.4 The voltage across the 2Ω resistor	$[1 \mathrm{~V}]$
3.5 The current through the 3Ω resistor	$[0,333 \mathrm{~A}]$

4.

A series-parallel combination circuit

CALCULATE THE FOLLOWING USING THE CIRCUIT GIVEN ABOVE
4.1 The supply current

4.2 The voltage across resistor $\mathrm{R}_{2}(250 \Omega)$	$[8,643 \mathrm{~A}]$
4.3 The voltage across resistor $\mathrm{R}_{3}(350 \Omega)$	$[15,400 \mathrm{~A}]$

5.

NOTE: $R=10 \Omega ; L=56 \mathrm{mH}$ \& C = $=100 \mathrm{uF} ; \mathrm{V}=240 \mathrm{~V}$ \& frequency $=50 \mathrm{~Hz}$ USE THE VALUES GIVEN ON THE CIRCUIT ABOVE AND DETERMINE THE FOLLOWING:
5.1 The inductive reactance
5.2 The capacitive reactance
5.3 The impedance of the circuit
5.4 The voltage across each component
5.5 The phase angle and
5.6 Draw the phasor diagram for this circuit
6. An alternating current wave has a peak to peak value of 60 V and calculate:
6.1 The peak value
6.2 The RMS value [21,21 V]
6.3 The average value [19,11 V]
6.4 The form factor
6.5 The crest factor
[1,414]

