CENTURION CAMPUSINDUSTRIAL ELECTRONICS N2EXERCISE4/5/2020 to 15/5/2020

DIRECT CURRENT THEORY

- 1. Three resistors with values 2 Ω , 3 Ω and 5 Ω are connected in series then these three series resistors are connected in parallel to a 10 Ω resistor. The DC supply voltage to the circuit is 24 V
 - **1.1** Draw a fully labelled circuit diagram explained above and calculate:

1.2	The supply current and	[4,8 A]
1.3	The voltage drop across the 3 Ω resistor.	[7,2 V]

REFER TO THE CIRCUIT ABOVE AND CALCULATE:

2.1	The total resistance of the circuit	[1 Ω]
2.2	The supply current	[12 A]

USE THE CIRCUIT ABOVE AND DETERMINE THE FOLLOWING:

3.1 The total resistance of the circuit	[6 Ω]
3.2 The current flowing through the circuit	[1 A]
3.3 The voltage across the 6 Ω resistor	[1 V]
3.4 The voltage across the 2 Ω resistor	[1 V]
3.5 The current through the 3 Ω resistor	[0,333 A

4.

A series-parallel combination circuit

CALCULATE THE FOLLOWING USING THE CIRCUIT GIVEN ABOVE

4.1 The supply current

4.2 The voltage across resistor $R_2(250 \Omega)$

[8,643 A] [15,400 A]

4.3 The voltage across resistor $R_3(350 \Omega)$

5.

NOTE: R = 10 Ω ; L = 56mH & C =100 uF; V = 240 V & frequency = 50 Hz

USE THE VALUES GIVEN ON THE CIRCUIT ABOVE AND DETERMINE THE FOLLOWING:

5.1 The inductive reactance	[17.593 Ω]
5.2 The capacitive reactance	[31,831 Ω]
5.3 The impedance of the circuit	[17,399 Ω]
5.4 The voltage across each component	[V _R = 137,94 V;
	V _L = 137,94 V; V _C = 137,94 V]
5.5 The phase angle and	[61,020 ⁰]
5.6 Draw the phasor diagram for this circuit	

6. An alternating current wave has a peak to peak value of 60 V and calculate:

6.1 The peak value	[30 V]
6.2 The RMS value	[21,21 V]
6.3 The average value	[19,11 V]
6.4 The form factor	[1,11]
6.5 The crest factor	[1,414]